
On Lehmer's Method for Finding the 
Zeros of a Polynomial 

By G. W. Stewart III* 

Abstract. Lehmer's method for finding a zero of a polynomial is a procedure for searching 
the complex plane in such a way that a zero is isolated in a sequence of disks of decreasing 
radii. In this paper modifications of the method that improve its stability are given. The 
convergence of the method and the use of the resulting approximate zero to deflate the 
polynomial are discussed. 

1. Introduction. Lehmer's method [4] for finding the zeros of a polynomial 

f(z) = ao + aiz + * * * + anz' , (aoa. & O), 

is based on a procedure for determining if f(z) has a zero in the closed disk 

D(s; p) = {z:Iz - sl ? p} . 

This procedure is used to search the complex plane in such a way that a zero of f(z) 
is isolated in a sequence of disks of decreasing radii. When a sufficiently small disk 
containing a zero is found, the center of that disk is accepted as an approximate zero 
to be divided out of the polynomial. The process is then restarted, using the reduced 
polynomial. Of course, at any point in the process an iterative method such as 
Newton's method may be applied in an attempt to find a zero contained in the 
current disk. 

The method as given by Lehmer tends to be numerically unstable. Specifically, 
in the procedure for determining if f(z) has a zero in a disk, numbers must be com- 
puted that may easily underflow or overflow the floating-point range of most com- 
puters. In addition, the searching procedure is organized so that there is some pos- 
sibility of the method breaking down prematurely. It is the object of this paper to 
show how these difficulties may be eliminated by suitable modifications in the 
method. 

In the next section the modified method will be described and its differences 
from the original method pointed out. In Section 3 the problem of convergence will 
be discussed, with particular attention being paid to the consequences of dividing 
out the approximate zero. Finally, in Section 4 a PL/I program, appearing in the 
microfiche section of this journal, that incorporates the results of this paper will be 
described. 

2. The Modified Method. Lehmer's method uses the basic procedure for de- 
termining if f(z) has a zero in a disk to search the complex plane for a zero of f(z). 
One step of the search pattern goes roughly as follows. 
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Starting with a disk D(s; p) containing a zero of f(z), an annulus 

A (s'; p') = {z: p' < Iz -sl < 2p' 

inside D(s; p) containing a zero of f(z) is determined. This annulus is then covered 
by disks and one of them, D(s"; p"), containing a zero of f(z) is found. The process is 
then restarted using the disk D(s"; p"). Except perhaps for the first step, each 
annulus A (s'; p') is contained in D (s; p). Moreover, after the first step 

p' < p/2 

and 

(2.1) p= 7p'/8, 

so that the process must converge. 
Specifically, given the disk D(s; p), determine if it contains a zero of f(z). If it 

does, determine the first positive integer i such that the disk D(s; 2-ip) does not 
contain a zero of f(z), and set 

p' 2-P 

If D(s; p) does not contain a zero of f(z), determine the first positive integer i such 
that D(s; 2ip) does contain a zero of f(z), and set 

pI = 2-1 p 

In either case, if s' = s, the annulus A (s'; p') contains a zero of f(z). 
If s $ 0, let 

(2.2) u =-s/Isl 

otherwise let u be chosen so that IuJ = 1. If 

Sk =S + 13 pu exp , 
- 

ri , (k = 12 2, * *, 8),2 =s 
8-pep 4 7J 

and p" is defined by (2.1), then the disks 

Dk = D(sk'; P) 

cover the annulus A(s'; p'). Examine the disks Dk for zeros of f(z) in the order 
D1, D8, D2, D7, D3, D6, D4, D5. Let Dj be the first of these disks containing a zero 
of f(z) and let s" = sj'. This completes one step of the search. 

Th% &dw-i-m- ois tv isregdi-tk depends on whether a zero fias already been found. 
If one has, let s = 0 and p be equal to the outer radius of the first annulus obtained 
in the search for the last zero. If no previous zero has been found, take s = 0 and 

p = 1.1Iao/aI11 . 

This last choice insures that the starting disk D(O; p) contains a zero of f(z). 
No disk after the first one can contain the origin. Hence the number u is well 

defined by (2.2) except in the first step of the search. For the first step the choice of u 
again depends on whether a zero has already been found. If none has, take u = 1. 
If the last zero found is r, take 
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(2.3) U= T/Jrl . 

This choice of u is motivated by the expectation that f(z) will usually have real 
coefficients and hence conjugate pairs of zeros. If u is defined by (2.3), then, having 
found the zero r, the search immediately attempts to find a conjugate zero. 

The procedure for determining whether f(z) has a zero in D(s; p) consists of three 
steps. First note that f(z) has a zero in D(s; p) if and only if 

h(z) = f(pz + s) 

has a zero in the unit disk D(O; 1). Thus the procedures can be broken up into the 
following three steps. 

1. Calculate the coefficients of 

g(z) = bo + biz + *+ bz = f(z + s). 

2. Calculate the coefficients of 

(2.4) h(z) = co + c1z + * + cnz' = g(pz) 

3. Determine whether h(z) has a zero in the unit disk. 
The polynomial g(z) is obtained from f(z) by shifting, and h(z) from g(z) by 

scaling. 
The shifting step can be accomplished by iterated synthetic division: 

b('-zl) =an_ i (i = OX 1) n), 

(2.5) bn(k) = bn(kl) (k = 0,1, * *, n) 

bnil) = bn-) + sbni+1l (i = 1, 2, **, k + 1; k =0, 1, * n 1). 

The coefficients of g(z) are given by 

bi = bi( (i = 0 1 ,n) . 

This straightforward scheme offers no special computational difficulties. 
More care must be taken with the scaling step. Mathematically, the coefficients 

of h(z) are given by 

(2.6) ci = pubi. 

However, if n is large and p > 1, the absolute values of the ci may exceed, or over- 
flow, the largest number representable in the computer performing the calculations. 
Likewise, if p < 1, then the absolute values of the ci may underflow the smallest 
positive number representable in the computer. Most computers have provisions 
for setting the results of an underflow producing operation to zero. The following 
scaling algorithm uses this feature. 

Let Q be the largest positive number that can be represented in the computer. 
Then a set of ct, different from those of (2.6), are defined as follows: 

1. Determine the largest number a- satisfying 

o <a- <Q. 

alb2l < . (i = 1, n) 
2. If p< 1, set 
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where it is understood that ci = 0 if underflow occurs in its computation. 
3. If p > 1, set 

t (ap) b (i = n, n- 12 .. * * 0),2 

with ci = 0 if underflow occurs in its computation. 
The nonzero ci defined by this algorithm stand in constant proportion to the ci 

defined by (2.6). Overflows cannot occur in the course of the algorithm. The effect 
of setting underflows to zero is to produce a polynomial slightly perturbed from some 
constant multiple of h(z) as defined by (2.6). To these perturbations in the co- 
efficients there correspond perturbations in the zeros of h(z). The perturbations in 
the zeros may be large; for if p < 1, the degree of the polynomial produced by the 
scaling algorithm may be less than n. However, the searching procedure only re- 
quires that the zeros of h(z) in and about the unit disk be well determined, and it is 
just these zeros that are feast sensitive to fie perr Ti gl1ig 
algorithm. 

The algorithm for determining whether a polynomial has a zero in the unit disk 
is based on the following theorem due to Schur [5] and Cohn [3]. 

THEOREM. With the polynomial 

ho(z) =co + ciz + + CnzX (c0 O ?), 

associate the polynomial 

ho*(z) znho(z-1) = ?n + en-1Z + * + CoZn. 

Let mo = cn/co. Then, if Imol ? 1, ho(z) has a zero in the unit disk. On the other hand, 
if ImoI < 1, the polynomial 

(2.7) hl(z) = ho(z) - moho*(z) 

is of degree less than n and has the same number of zeros in the unit disk as ho(z). 
Moreover, hi(O) 5 0. 

The theorem may be applied repeatedly to generate a sequence of polynomials 
hi(z), all having the same number of zeros in the unit disk as ho(z), and a sequence 
of associated constants mi. The process terminates either when some mi > 1, in 
which case ho(z) has a zero in the unit disk, or when some h i(z) is constant, in which 
case ho(z) has no zeros in the unit disk. This is the basic algorithm for determining 
if ho(z) has a zero in the unit disk. 

After some value s has been accepted as an approximate zero, it must be divided 
out of the polynomial: 

f(z) = (z - s)fi(z) + f(s). 

The search is then restarted with the deflated polynomial fi(z). It is given by 

fi(z) = b1(n-) + b2(n-2)z + ... + b (O)Zn- 

where the b (k) are defined by (2.5). 
The method proposed in this section differs from Lehmer's original method in a 

number of ways. In the search pattern the orientation of the disks covering an 
annulus and the order in which they are examined have been changed to enhance 
the tendency of the method to find smaller zeros first. This tends to increase the 
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stability of the deflation process [7, pp. 56-59]. However, the resulting improvement 
is marginal, and other patterns may be preferable. The referee has suggested two 
which may save machine computations. The first pattern takes u = 1 and examines 
the disks in the order 1 5 3 7 2 4 6 8, which tends to capture real zeros first. The 
second always examines the disks in the order 1 4 7 2 5 8 3 6, so that the fourth disk 
examined is the first to overlap with its predecessors. 

The procedure for determining if f(z) has a zero in a given disk must of course 
be carried out with rounding error. This means that if a zero of f(z) lies very near 
the boundary of the disk, the procedure may locate it inside the disk when it is 
actually outside, and vice versa. In particular, if the covering disks do not overlap 
the annulus sufficiently, a zero lying near the boundary of the annulus may be 
located in the annulus but fail to appear in any of the covering disks. To avoid such 
a premature breakdown in the search, the size and position of the disks have been 
adjusted so that any point of the annulus lying near the boundary of one disk lies 
well within another disk. 

The scaling algorithm has been modified as described above to deal with the 
problem of overflows and underflows. 

The Schur-Cohn algorithm has been changed from its original form [3], which, 
instead of forming the polynomial hl(z) of Eq. (2.7), works with the polynomial 

(2.8) hl(z) = eoho(z) - cnho*(z) 

While each of the polynomials hii(z) is a constant multiple of the hi(z) obtained from 
(2.7), their coefficients can increase or decrease so rapidly that overflow or underflow 
becomes a serious problem. On the other hand, the coefficients of the polynomials 
hi can at most double in size at each step. Note also the computation of hi requires 
only half as many multiplications as the computation of hi. 

Finally, some comments on the stability of the Schur-Cohn algorithm are in 
order. An error analysis of the algorithm in [6] shows that the algorithm can be 
numerically unstable in the sense that the rounding errors made in computing the 
hi and m, may correspond to large perturbations in the coefficients of ho. Such an 
instability is signaled by the emergence of an mi with modulus very near unity. In 
somewhat limited experiments, the author has not encountered a gross failure of the 
algorithm; moreover, the overlapping of the disks mentioned above provides some 
protection against mild instabilities. If, however, greater security is desired, one 
can monitor the mi and, following Lehmer, enlarge the offending disk when an 
instability occurs. 

3. Convergence. In determining a convergence criterion for the method, two 
points must be kept in mind. The first is that there is a limit to the accuracy ob- 
tainable by the method, for when the disks become small enough rounding errors 
will cause the search to fail to find a zero in the current annulus. The second point 
is that the approximate zero finally accepted must be used in the deflation process. 
If it is in error, its inaccuracies may be transmitted to the remaining zeros. Thus we 
must answer two questions. First, how accurate must an approximate zero be before 
it can be safely used in the deflation process? Second, can the method outlined in the 
last section attain that accuracy? 
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Wilkinson [7] has analyzed the deflation process in detail. The following is a 
summary of his results. 

The accuracy attainable in any zero is limited by the sensitivity of the zero to 
small relative perturbations in the coefficients of a size corresponding to changing 
the low-order portions of the machine representation of the coefficients. Each 
perturbation in the coefficients causes a corresponding perturbation in the zero, and 
as the perturbations vary the perturbed zero traces out a region of indeterminacy 
about the original zero. The best that can be expected of a numerical method 
operating at a fixed precision is that it locate an approximate zero within this 
region of indeterminacy. A zero having a small region of indeterminacy is called a 
well-conditioned zero; one having a large region is called an ill-conditioned zero. 

Wilkinson has shown that an approximate zero may-be used in the deflation 
process without unduly affecting the other well-conditioned zeros, provided first 
that the zero divided out is among the smallest in absolute value and second that the 
approximate zero lies in the region of indeterminacy. The search pattern of Lehmer's 
method tends to find smaller zeros first, so that the first condition is satisfied. In [6] 
arguments are given to indicate that for a simple zero Lehmer's method will break 
down only when the center of the current annulus is near the region of indeterminacy 
for the zero being located. There is numerical evidence for believing that this is also 
true of multiple zeros. Thus it is recommended that Lehmer's method be allowed 
to proceed until it breaks down, at which point the center of the offending annulus 
is to be accepted as an approximate zero. 

4. A PL/I Program. The program listed in the microfiche section of this journal 
is a straightforward implementation of the method described in Section 2. The 
program returns a set of approximate zeros and a set of condition numbers 

cond (z) = fa(IZI)/1f'(z)I 

where 

fa(z) = laol + jailz + + lanlz Z 

For a simple zero z, tv cond (z) gives an estimate of the perturbation induced in z by 
relative perturbations in the coefficients of size v. This is treated in more detail in [6]. 

Since the program is quite slow, the user may wish to apply an iteration such as 
Newton's method in an attempt to find a zero in the current disk. When this is done, 
the iteration should be continued until the limiting accuracy described in Section 3 
has been reached (see [8, pp. 461-464]; also [1] and [2]). 

In the author's experience, the program produces a set of approximate zeros 
that belong to a polynomial with coefficients very near those of the original poly- 
nomial, a strong indication that the modified Lehmer's method attains the limiting 
accuracy of a zero before it breaks down. Of course, the zeros themselves may be 
quite inaccurate. 

5. Acknowledgement. I am indebted to Professor A. S. Householder for suggest- 
ing this work and for his valuable comments and criticisms. 
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-2- 

THEN bo 
R = 1.i*A.B(A(O))**(l/FL0AT(N)); 
CALL ANNULJS(AR '1'BN); 

DD; 

R a LDR; 
CALL ANNtULJS(A, R, 'OI' B, N); 

ID; 
%LDR - R; 
IF? R=O THEN GO 4V DEFLATE; 

FfIND, /* C$YER THE ANNULUTS OF INNE RADIUS R AND CUITER S 
WIM EIGHT DI1SKS A$IATJWmT TO FIND A DIS C0NTAINIIR 
A ZER0.- IF THE ANNULU IS CEWKYERED ABOUT THE $RIG IN, 
PLACE THE FIRST DISK IN THE DIRECTI6 THE CONJUG3ATE 
OF THE LAST ZERO F0UnD. F IT I*Sl z T PLACE THE 
FIRST DISK AS NEA AS P0SSIBLE T mE 0IGIN AND TS 
THE NEARER DISKS FI:RST. * 

DELTAS - C$NS*R:. 
IF 8r' =O 

THDI DELTAS -DELTAS*(S/ABSCS)); 
ELSE IF '=NNJ 

?HflI IF Z(mNIV)N$=0 
THEN DELTAS w DEILTA8*(C0NJG(Z(NUN-l))/AB8(Z(NN-N))); 

RI' - C0NR*R; 
lO K-i1 To) 8; 

SK 5 + DELTAB*IJNIT(K); 
I7 SK - S THEN 0. TO NGZEU:; 
CALL FLJNIE(As B,2SK, N, N-1); 
CALL SCALECB, C, RP,NX); 
IF COHN (CN1) 7THE 0$ 4 ZU$; 

SND; 

/*@OF S 

N0ZER0: 1* NONE $F THE C$VER ING DISKS IS F*SND 4o C0ZA.If A ?0. 
THIS FAIIAJRE IS CAUSSE) BY HVLUNDING ERRR AND INDICATES 
THAT THE NEIVD CAN30T PR$CEKD WIT IWREAING 
THE PRECISON $7 THE ARI ETIWC. HUE THEJ-flAfl is 
TATED AS EFFECIVE COE E AND THE CUTS OF 
THE ARNM IS ACCE AS AN AFPE0XITE ZEO. 

GO 4 DEFLATE;- 
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ZEf#: /* A ZR HAS BEEN LATED IN ME DISK WITH CENTER SK AND 
RADIUS RP. DETEMINE A NER ANNULUS AND PROCEED WITH 
THE SEARCH. AT THIS POT THE USER MAY WISH r 1XR0VE 
THiE EFFICIENCY OF THE PROGRAM BY AflFMPTING T FIND 
A ZER$ IN THE DISK USING AN ITRATIVE M10D. IF THE 
ATNWPT IS SUCCESFL., THE RESULT SH0ULD BE PLACED IN 
$ AND CNTR$L TRANSFERRED T DEFLATE. * 

S a BK; 
R a RP; 
CALL YUDER(A,pB.SNN- 1); 
CALL ANNUBS(B,R,l 'B,N); 
IFAR=o 

1111 Go To DEFlATE; 
EWE c4 To FIND; 

DEFLATE: /* DVIDE THE APPROXIMATE ZERO S OT 0OF THE P0LYN$IAL * 

CALL FUNER(A, B, S, N, O); 
N a S-1; 
z(ml-N) S; 
Do I-O To N; VI)al(I+1); END; 
WF N =I T1E (3 To START; 

Z(xx) a -A(O); 

Ff1ISH: /* FiR EACH ZE91 Z C4UTE THE COINITIO1N N E 

CuxN(Z) = FA(ABS(t))/ABS(FP(Z)), 

mB rP Is mm DERIVATIVE OF F AND FA IS THE P#LY1*CAL 
wV. C$EFFICI AR THE Aspun VALUE OF ThS 

-0I#VUIFI#1W Go1 gm 

Do 1e0 T% N; A(I)-ABS(AA(I)); END; 
tP Yim TO MN; 

COiK) -1; 
5 a AD(Z(K)); 
CALL fMN (AB.,sxN0O); 
CALL W (A, C, Z(K), ,i 1); 
cAD(K) - B (0)/ABS(C(i)); 

RZ: W ; 



FSJNDER: PR0CEDURE(A, B, S, N, C); 

/* DER COMPUTES BY ITERATED SY1?ETIC DIVISI$N Tit 
FIRST NC+1 C0EFFICIIS 0F THE TAYI$R EXPANSI$N 0 ABl 
S $F THE P$LYNOMIAL WH$SE C$EFFICI S ARE AIIEJ 
IN THE ARRAY A. THE RESULTS ARE ETURNED INl THE 
FIRST NC+1 WATIONS 0F THE ARRAX B. 

DECIxRE ((ArB)(*),S) COPLx(16), 
4 I,,J,w) STATIC FIX BINARY; 

Do I=O N; B(I)=A(I); END; 
NC = NIN(NC,N-1); 
bO I=O T NNC; 

D$ J=N T I+1 BY -1; 
B(J-1) - B(J-1) + S*B(J); 

END; 

MD FUNDER; 

SCALE: P*rEUR(A, B, SCLFAC, N); 

/* SCALE RETURNS IN B A CONSTA MC $F TH m 
A(I)*SCLPAC**I 1THI IS DNE IN MME A WY THT 
$VERFl$WS CMhT PCCUR. ME wNn SF Ocam, Tn 
RESULT IS SET TO Zf * 

DWCLAf (A, B) (*) C*wI(16), (SgrAC, (RnX) STATIC) RML16), 
I STATIC FIXED BINf; 

MX - 0; 
Dt IwO 1T N; NX - MAX(MX,AM(A(I))); MD; 
R - BIC*IN/MX; 
IF SCIPAC<Z 

TRI D I-o To N; 
B(I) - R*A(; 
R - R*SCLFAC; 

ELSE D I=N T 0 BY -1; 
B(I) R*A(I); 
R w R/SC LFAC; 

SD; 
fl; 
ED SCALE; 



ANUMLJS: PRocCEMrE(A, R, RT, N); 

/* AmwULUS wrERmiN AN ANUlUJS ABUT THE ORIGI 0? INNE 
RADIUS R AND UtTER RADITUS 2*R CONrAIN A ZERO 
OF THE P$LYN$MIAL WHOSE CflFICIEWrS ARE C$NTAIND 
IN A. F THE POLYN*IAL HAS A ZER AT THE ORIGIN, 
THE VAL ZER$ IS RETiURN IN R. INITIALLY R CONTAINS 
AN ETDhTE OF THE $fE RADIUS OF THE ANNUWS. F 
ROOT/IS TRUE1, THE CIRCLE ABOIUT THE ORIGIN $F RADIUS 
R IS ASSUMED To CONTAIN A ZERO. 

DSCIARE A(*) coPLEx(6), (R,R2 STATIC) RA(16), 

IF A(O)=0 

R 0; 

U; 
IF ROOT THU Got To CNTRCT; 
R2 a ; 
CALL SCA .L(A, C,R , N); 
w cmtwcn) 

THU s3 CTrRCT; 
ELE WAND; 

CNRC'TIF R2 R; 
R -R/t 
CALL SCALE (AC,R,N); 
r Cow(CN) 

THUO0O To Cr ; 
L Rfl; 

WXPAND: R a R2; 
712 . 2*; 
CALL WALE(A,C, R2, N); 
xI $m(ci) 

S MRM; 
m o To EANM; 

Ut AlEULUS; 

O*N: PRVCn)RR(AN) BIT(1); 

O* cfll lu A VALUE OF 1 9 B IF THE POLY!*IAL WHOSE 
CtffFICIUFS ARE CO$INTAED IN A HAS A ZERO TN 
To CT*D UIT3 DM. V Don TIWE S THE ARRAY A. 



Dt1AU (A(*),(M,TEKP) STATIC) 00nnzxc16), 
(MX REAL(16), (IL) FIXED BINA) &TATIC; 

MX - 0; 
Do 10 To N; MX a 3AX(4XABS(A(I))); ED; 
L - 0; 
Do IN T% 0 BY -1; 

A(I) - A(I)/MX; 
w A(I) -o & IoC) THEN I.I; 

XK; 
I A (O) mn RrTURN('1'B); 

I$P: M - A(L) (CVNJG(A(o)); 
IF *8Q(I)> THEN RrR('1'B); 
IF rI^ Tm RE1URN('O'B); 
A(O) = A(O) - N*C"NJG(A(L)); 
L a b-1; 
Do Id BY 1 WFUR(ICL-I+1); 

TUO w A( it+1) - N*CNG(A(I)); 
A(I) A(I) - rCOwa(A(LI+1)); 
A( L-1+1) - Me; 

M; 

DID C$HN; 
a aR; 
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