On Lehmer’s Method for Finding the
Zeros of a Polynomial

By G. W. Stewart III*

Abstract. Lehmer’s method for finding a zero of a polynomial is a procedure for searching
the complex plane in such a way that a zero is isolated in a sequence of disks of decreasing
radii. In this paper modifications of the method that improve its stability are given. The
convergence of the method and the use of the resulting approximate zero to deflate the
polynomial are discussed.

1. Introduction. Lehmer’s method [4] for finding the zeros of a polynomial

f@) =at+az+ - +a", (am. #0),
is based on a procedure for determining if f(2) has a zero in the closed disk

D(s;p) = {ei]e — s| = p} .

This procedure is used to search the complex plane in such a way that a zero of f(z)
is isolated in a sequence of disks of decreasing radii. When a sufficiently small disk
containing a zero is found, the center of that disk is accepted as an approximate zero
to be divided out of the polynomial. The process is then restarted, using the reduced
polynomial. Of course, at any point in the process an iterative method such as
Newton’s method may be applied in an attempt to find a zero contained in the
current disk.

The method as given by Lehmer tends to be numerically unstable. Specifically,
in the procedure for determining if f(z) has a zero in a disk, numbers must be com-
puted that may easily underflow or overflow the floating-point range of most com-
puters. In addition, the searching procedure is organized so that there is some pos-
sibility of the method breaking down prematurely. It is the object of this paper to
show how these difficulties may be eliminated by suitable modifications in the
method.

In the next section the modified method will be described and its differences
from the original method pointed out. In Section 3 the problem of convergence will
be discussed, with particular attention being paid to the consequences of dividing
out the approximate zero. Finally, in Section 4 a PL/I program, appearing in the
microfiche section of this journal, that incorporates the results of this paper will be
described.

2. The Modified Method. Lehmer’s method uses the basic procedure for de-
termining if f(z) has a zero in a disk to search the complex plane for a zero of f(z).
One step of the search pattern goes roughly as follows.
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Starting with a disk D(s; p) containing a zero of f(2), an annulus
A5 0") = {zip" < |z — | = 20’}

inside D(s; p) containing a zero of f(2) is determined. This annulus is then covered
by disks and one of them, D(s”; p”), containing a zero of f(2) is found. The process is
then restarted using the disk D(s”; p”). Except perhaps for the first step, each
annulus A (s’; p’) is contained in D(s; p). Moreover, after the first step

o = 0p/2
and
(2.1) o =10/8,

so that the process must converge.

Specifically, given the disk D(s; p), determine if it contains a zero of f(2). If it
does, determine the first positive integer ¢ such that the disk D(s; 2-%) does not
contain a zero of f(2), and set

p'=2""p.

If D(s; p) does not contain a zero of f(z), determine the first positive integer 7 such
that D(s; 2%) does contain a zero of f(2), and set

o =2".

In either case, if s = s, the annulus A (s’; p’) contains a zero of f(z).
If s £ 0, let

(2.2) u= —s/ls|;

otherwise let » be chosen so that |u| = 1. If

13 k—1 .
sk’=s+§p’uexp <—T1n>, 03
and p” is defined by (2.1), then the disks

D, = D(s/;0"")

I
—
-
[\
~
-
(]
~
-

cover the annulus A(s’; p’). Examine the disks D; for zeros of f(z) in the order
D,, Ds, Ds, Dy, D3, D, Dy, Ds. Let D; be the first of these disks containing a zero
of f(2) and let s” = s;/. This completes one step of the search.

Tine droive ot & startimg disk depends on whether a zero has already been found.
If one has, let s = 0 and p be equal to the outer radius of the first annulus obtained
in the search for the last zero. If no previous zero has been found, take s = 0 and

p = L1lao/a,'™.

This last choice insures that the starting disk D(0; p) contains a zero of f(z).

No disk after the first one can contain the origin. Hence the number u is well
defined by (2.2) except in the first step of the search. For the first step the choice of u
again depends on whether a zero has already been found. If none has, take u = 1.
If the last zero found is r, take
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(2.3) u="7*/|r|.

This choice of u is motivated by the expectation that f(z) will usually have real
coefficients and hence conjugate pairs of zeros. If u is defined by (2.3), then, having
found the zero r, the search immediately attempts to find a conjugate zero.

The procedure for determining whether f(2) has a zero in D(s; p) consists of three
steps. First note that f(z) has a zero in D(s; p) if and only if

h(z) = f(pz + )
has a zero in the unit disk D(0; 1). Thus the procedures can be broken up into the
following three steps.
1. Calculate the coefficients of
g@) =bo+biz+ --- +b" = fz +s) .
2. Calculate the coefficients of

(2.4) h@) =cotciz+ «- 4 2" = g(p2) .
3. Determine whether 2(z) has a zero in the unit disk.
The polynomial g(z) is obtained from f(z) by shifting, and h(z) from g(z) by
scal’?lfé shifting step can be accomplished by iterated synthetic division:
i =aws, (G=0,1,--+,n),
25) Y =0"", (*=01---,n),
D = p® + P, ¢=1,2, -, k+1;k=0,1,---,n—1).
The coefficients of g(z) are given by
bi=b0", (G=0,1,---,n).

This straightforward scheme offers no special computational difficulties.
More care must be taken with the scaling step. Mathematically, the coefficients
of h(z) are given by

(2.6) ci=p'b:.
However, if n is large and p > 1, the absolute values of the ¢; may exceed, or over-
flow, the largest number representable in the computer performing the calculations.
Likewise, if p < 1, then the absolute values of the ¢; may underflow the smallest
positive number representable in the computer. Most computers have provisions
for setting the results of an underflow producing operation to zero. The following
scaling algorithm uses this feature.

Let @ be the largest positive number that can be represented in the computer.
Then a set of c;, different from those of (2.6), are defined as follows:

1. Determine the largest number ¢ satisfying

0<o=2QQ,

Ulbilégy @=0,1,---,n).
2. If p < 1, set
C; = ('Ipi)bir (7'=07 1, ~-,n),
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where it is understood that ¢; = 0 if underflow occurs in its computation.
3. If p > 1, set

ci:(‘fpi—n)bi) (i=n)n_1;"';0)y

with ¢; = 0 if underflow occurs in its computation.

The nonzero ¢; defined by this algorithm stand in constant proportion to the c;
defined by (2.6). Overflows cannot occur in the course of the algorithm. The effect
of setting underflows to zero is to produce a polynomial slightly perturbed from some
constant multiple of A(z) as defined by (2.6). To these perturbations in the co-
efficients there correspond perturbations in the zeros of h(z). The perturbations in
the zeros may be large; for if p < 1, the degree of the polynomial produced by the
scaling algorithm may be less than n. However, the searching procedure only re-
quires that the zeros of A(z) in and about the unit disk be well determined, and it is
just these zeros that are least sensitive to Tiie perturitativm ganawead vy Ve sealing
algorithm.

The algorithm for determining whether a polynomial has a zero in the unit disk
is based on the following theorem due to Schur [5] and Cohn [3].

TurorEM. With the polynomial

ho(z) =cot+ ez + -+ + e”, (co # 0),
associate the polynomial

he*(2) = 2'ho(z™") = Cn + Coosz + -+ + Cetn .

Let mo = ¢,/to. Then, if |mo| = 1, ho(z) has a zero in the unit disk. On the other hand,
if |mo| < 1, the polynomial

.7 hi(2) = ho(2) — moho*(2)

1s of degree less than n and has the same number of zeros in the unit disk as ho(z).
Moreover, h1(0) = 0.

The theorem may be applied repeatedly to generate a sequence of polynomials
h«(z), all having the same number of zeros in the unit disk as ho(2), and a sequence
of associated constants m;. The process terminates either when some m; = 1, in
which case ho(z) has a zero in the unit disk, or when some 4 ,(2) is constant, in which
case ho(z) has no zeros in the unit disk. This is the basic algorithm for determining
if ho(2) has a zero in the unit disk.

After some value s has been accepted as an approximate zero, it must be divided
out of the polynomial:

@) = (2 — ) f1(2) + f(s) .
The search is then restarted with the deflated polynomial f,(2). It is given by
fi@) =" + 5, P 4 oo+ 5.

where the b;® are defined by (2.5).

The method proposed in this section differs from Lehmer’s original method in a
number of ways. In the search pattern the orientation of the disks covering an
annulus and the order in which they are examined have been changed to enhance
the tendency of the method to find smaller zeros first. This tends to increase the
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stability of the deflation process [7, pp. 56-59]. However, the resulting improvement
is marginal, and other patterns may be preferable. The referee has suggested two
which may save machine computations. The first pattern takes v = 1 and examines
the disks in the order 1 5 3 7 2 4 6 8, which tends to capture real zeros first. The
second always examines the disks in the order 147 2 5 8 3 6, so that the fourth disk
examined is the first to overlap with its predecessors.

The procedure for determining if f(z) has a zero in a given disk must of course
be carried out with rounding error. This means that if a zero of f(z) lies very near
the boundary of the disk, the procedure may locate it inside the disk when it is
actually outside, and vice versa. In particular, if the covering disks do not overlap
the annulus sufficiently, a zero lying near the boundary of the annulus may be
located in the annulus but fail to appear in any of the covering disks. To avoid such
a premature breakdown in the search, the size and position of the disks have been
adjusted so that any point of the annulus lying near the boundary of one disk lies
well within another disk.

The scaling algorithm has been modified as described above to deal with the
problem of overflows and underflows.

The Schur-Cohn algorithm has been changed from its original form [3], which,
instead of forming the polynomial 4,(z) of Eq. (2.7), works with the polynomial

(2.8) Bi(2) = Toho(2) — caho*(2) .

While each of the polynomials 7;(z) is a constant multiple of the % ;(2) obtained from
(2.7), their coefficients can increase or decrease so rapidly that overflow or underflow
becomes a serious problem. On the other hand, the coefficients of the polynomials
fi; can at most double 1n size at each step. Note also thie computation of 7i; requires
only half as many multiplications as the computation of %;.

Finally, some comments on the stability of the Schur-Cohn algorithm are in
order. An error analysis of the algorithm in [6] shows that the algorithm can be
numerically unstable in the sense that the rounding errors made in computing the
h: and m, may correspond to large perturbations in the coefficients of ho. Such an
instability is signaled by the emergence of an m; with modulus very near unity. In
somewhat limited experiments, the author has not encountered a gross failure of the
algorithm ; moreover, the overlapping of the disks mentioned above provides some
protection against mild instabilities. If, however, greater security is desired, one
can monitor the m; and, following Lehmer, enlarge the offending disk when an
instability occurs.

3. Convergence. In determining a convergence criterion for the method, two
points must be kept in mind. The first is that there is a limit to the accuracy ob-
tainable by the method, for when the disks become small enough rounding errors
will cause the search to fail to find a zero in the current annulus. The second point
is that the approximate zero finally accepted must be used in the deflation process.
If it is in error, its inaccuracies may be transmitted to the remaining zeros. Thus we
must answer two questions. First, how accurate must an approximate zero be before
it can be safely used in the deflation process? Second, can the method outlined in the
last section attain that accuracy?
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Wilkinson [7] has analyzed the deflation process in detail. The following is a
summary of his results.

The accuracy attainable in any zero is limited by the sensitivity of the zero to
small relative perturbations in the coefficients of a size corresponding to changing
the low-order portions of the machine representation of the coefficients. Each
perturbation in the coefficients causes a corresponding perturbation in the zero, and
as the perturbations vary the perturbed zero traces out a region of indeterminacy
about the original zero. The best that can be expected of a numerical method
operating at a fixed precision is that it locate an approximate zero within this
region of indeterminacy. A zero having a small region of indeterminacy is called a
well-conditioned zero; one having a large region is called an ill-conditioned zero.

Wilkinson has shown that an approximate zero may be used in the deflation
process without unduly affecting the other well-conditioned zeros, provided first
that the zero divided out is among the smallest in absolute value and second that the
approximate zero lies in the region of indeterminacy. The search pattern of Lehmer’s
method tends to find smaller zeros first, so that the first condition is satisfied. In [6]
arguments are given to indicate that for a simple zero Lehmer’s method will break
down only when the center of the current annulus is near the region of indeterminacy
for the zero being located. There is numerical evidence for believing that this is also
true of multiple zeros. Thus it is recommended that Lehmer’s method be allowed
to proceed until it breaks down, at which point the center of the offending annulus
is to be accepted as an approximate zero.

4. A PL/I Program. The program listed in the microfiche section of this journal
is a straightforward implementation of the method described in Section 2. The
program returns a set of approximate zeros and a set of condition numbers

cond (z) = fu.(|2])/|f' )|,

where

fo@) = lao| + lasle + - -+ + |aale" .

For a simple zero 2, 9 cond (2) gives an estimate of the perturbation induced in z by
relative perturbations in the coefficients of size 5. This is treated in more detail in [6].

Since the program is quite slow, the user may wish to apply an iteration such as
Newton’s method in an attempt to find a zero in the current disk. When this is done,
the iteration should be continued until the limiting accuracy described in Section 3
has been reached (see [8, pp. 461-464]; also [1] and [2]).

In the author’s experience, the program produces a set of approximate zeros
that belong to a polynomial with coefficients very near those of the original poly-
nomial, a strong indication that the modified Lehmer’s method attains the limiting
accuracy of a zero before it breaks down. Of course, the zeros themselves may be
quite inaccurate.

5. Acknowledgement. I am indebted to Professor A. S. Householder for suggest-
ing this work and for his valuable comments and criticisms.
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IF $LDR=Q
THEN Bg;
R = 1.1*ABS(A(0))**(1/FLgAT(K));
CALL ANNULUS(A,R,'1'B,N);
END; -
FLSE D¢;
R = $LDR;
CALL ARNULUS(A,R,'0'B,N);
END;
$LDR = R;
IF R=0O THEN G T¢ DEFLATE;

FIND: /* CYVER THE ARNULUS OF INNER RADIUS R AND CENTER S
WITH EIGHT DISKS AND ATTEMPT T¢ FIND A DISK CYNTAINING
A ZER§. IF THE ANNULUS IS CENTERED ABPUT THE $RIGIN,
PIACE THE FIRST DISK IN THE DIRECTIfN #F THE CPRJUGATE
OF THE LAST ZER§ FYUND. IF IT DEES , PLACE THE
FIRST DISK AS NEAR AS PPSSIBLE T¢ THE PRIGIN AND TEST

THE NEARER DISKS FIRST. */
DELTAS = C@NS*R:
IF $+=0

THEN DELTAS = - DELTAS*(S/ABS(S));

ELSE IF Ma=KK

THEN IF Z(NN-N}=0
THEN DELTAS = DELTAS*(C@NJG(Z(NN-K))/ABS(Z(NN-N)));
RP = CHNR*R; )
Dd K=1 10 8;
SK ~ S + DELTASMUNIT(K);
I¥ SK = S THEN CP TS NOZERS;
CALL FUNDER(A,B,SK,N,K-1);
CALL SCALE(B,C,RP,N);
IF C#HN(C,K) THEN Gf T¢ ZER$;
END;

NZERG: /% Ngn¢rmo¢vmm DISKS IS FPURD T¢ CUNTAIN A ZERg.
THIS FAILURE 1S CAUSED BY RJUNDING ERRgR AND INDICATES
THAT THE METHSD CANNST PRYCEED WITHSUT INCREASING
THE PRECISIPN #F THE ARITHMETIC. HERE THE.PAILURE IS
TRRATED AS EFFECTIVE CYRVERGENCE, AND THE CENTER #F
THE ANNULUS IS ACCEPTED AS AN APPREXIMATE ZER§.

Gf T¥ DEFLATE;
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ZERY: /* A 2ER§ HAS BEEN LYCATED IN THE DISK WITH CENTER SK AND
RADIUS RP. DETERMINE A NEW ANNULUS AND PRYCEED WITH
THE SEARCH. AT THIS PPINT THE USER MAY WISH TP IMPRUVE
THE EFFICIEXCY @F THE PRPGRAM BY ATTEMPTING Tp FIND
A ZER§ IN THE DISK USING AN ITERATIVE METHgD. IF THE
ATTEMPT IS SUCCESSFUL, THE RESULT SH@ULD BE PLACED IN
S AND CPNTRPL TRANSFERRED T¢ DEFLATE. */

8 = 8K;

R = RP;

FUNDER(A, B, S, N, N-1) ;
ANNULUS(B,R,'1'B,R);
. R=0 o8 3

THEN DEFLATE;
ELSE G§ T¢ FIND;

“EE

DEFLATE: /* DIVIDE THE APPRPXIMATE ZERP S @UT $F THE PPLYNMIAL - */

CALL FUNDER(A, B, S,N,0);

= R1;

2(MN-N) = S;

D§ I=0 TP N; N(I)=B(I+1); END;
IF N =) THER GP T¢ START;
Z(“) - -A(O),

FINISH: /* FPR EACH ZERJ Z CfMPUTE THE CPNDITIGN NUMBER

o¢nD(2) = FA(ABS(2))/ABS(FP(2)),

WHERE FP IS THE DERIVATIVE @F F AND FA IS THE PPLYNEMIAL
mcgml'ncm'rsmmusgim VALUE @F TH@SE y
*

fi VERFLIW GP TP ENWDF;
fo ZERGDIVIDE o? ¥ ENDF;
D =0 76 MN; A(T)=ABS(AA(1)); END;
D K=l TP NN
m(x) = °1’
8 = ABS(2(X));
cm. PONDER(A,B, 8,NN,0);
mmgn,c.z(x) ,NN,1);
ofap(x) = B(0)/ABS(C(1));
ENDF: END;
RETUEN;



FUNDER:

SCALE:

PRPCEDURE(A, B, S, N, NC) ;

/* FUNDER C@MPUTES BY ITERATED SYNTHETIC DIVISI¢N THE
FIRST NC+1 CPEFFICIENTS @F THE TAYL$R EXPANSIPR ABS
S §F THE PPLYMPMIAL WH@SE CPEFFICIENTS ARE C@NTAINE]
IN THE ARRAY A. THE RESULTS ARE RETURNED IN THE
FIRST NC+1 LFCATIORS ¢F THE ARRAY B.

DECLARE ((A,B)(*),S) CPMPLEX(16),
1,J,NRC) STATIC FIXED BINARY;
D 1=0 TP N; B(I)=A(I); END;
NNC = MIR(NC,N-1);
g 10 ¥ MxC;
Df J=N T¢ I+l BY -1;
B(J-1) = B(J-1) + S*B(J);
END;
RETURN;
END FUKDER;

PRPCEDURE (A, B, SCLFAC, N) ;

/*scmmuxfsmBAcﬁmmmmﬁrmnms
A(I)*SCLFAC**I. THIS IS DPNE IN SUCH A WAY THAT
PVERF1IAWS $CCUR. WHEN UNDERFLPWS $CCUR, THE
RESULT IS SET TO ZERp. */

DECIARE (A,B)(*) CPMPLEX(16), (SCLFAC,(R,MX) STATIC) RRAI(16),
I STATIC FIXED BIKARY;
X = 0;
D I=0 TP M; MX = MAX(MX,ABS(A(I))); EWD;
R = BIGEMEGA/MX;
IF SCLFAC<],
THEN D¢ 1=0O T¢ N;
B(I) = R*A(T);
R = R#SCLFAC;
END;
EISE 1=N 1¢ O BY -1;
B(I) = R%A(I);
R = R/SCLPAC;
END;
RETURN;
END SCALE;



ANNULUS: PRPCEDURE(A, R, RGT,N);

/* ANNULUS DETERMINES AN ANNULUS ABUT THE $RIGIN @} INNER
RADIUS R AND @UTER RADIUS 2#R C@NTAINING A ZER¢
¢F THE PYLYNPMIAL WH@PSE CPEFFICIENTS ARE CYNTAINED
IN A. IF THE PALYWIMIAL HAS A ZER§ AT THE @RIGIN,
THE VALUE ZERg IS RETURNED IN R. INITIALLY R C@NTAINS
AN ESTIMATE OF THE $UTER RADIUS @F THE ANNULUS. IF
R$PT/ IS TRUE, THE CIRCLE ABJUT THE @RIGIN gF RADIUS
R IS ASSUMED T¢ CPNTAIN A ZER{.

DECIARE :x?)r OAMPLEX(16), (R,R2 STATIC) REAL(16),
BIT(1);

IF A(0)=0
THER Dg;
R=0;
RETURN;
END;
IF RMPT THEK GP TP CKTRCT;
R2 = R;
CALL SCALE(A,C,R,N);
Ir ogn(c,N)
THEN G@ T¢ CNTRCT;
EISE G§ T¥ EXPAND;
CNTRCE: R2 = R;
R = R/Z;
CALL sc.?u(t)\,c, R,N);
IF cuv(C,N
THEN GJ T¢ CNRTRCT;
ELSE
R2;
= 2%R

OffN: PRYCEDURE(A,N) BIT(1);

/* CHiN RETURNS A VALUE OF '1'B IF THE PYLYNJMIAL WH@SE
'AINED
%}.Fncmrsmnclg.r mAHASAnZ{.:WmA.



, 6
DBCLATE (A(x), (4, 7000 S o o
T 1-0'T9 K; MX = WAX(HK, ABS(A(T))); END;
L = 0;

I=N T¢ O BY -1;
P A

IF A(I) =0 & L=0 THEN Le1I;

gnA(o)-o THEN RETURN('1'B);
: M = A(L) /CgNIG(A(0));
Ir ABS(M)>=1 THEN mmm('l'n),

IF L=1 THEN RETURN('0'B);
A(0) = A(O) - MROPRIG(A(L)) ;
L =1-1;

g 1-1 BY 1 wu;:.sg:«n -I+1); (AL
L-I+1) - moﬂnm
I) = Agt) - M*CPRIG(A(L- I+1 3
A(L-T+1) = TEMP;

i
END LEHMER;



SussEcT CLASSIFICATION SYSTEM FOR INDEX oF REVIEWS . . . . . . .
InpicEs TO Vorume XXIII . . . . . . . . .. . . . . .. ...
Index of Papers and Technical Notes by Authors . . . . . . . . . .
Index of Reviews by Author of Work Reviewed . . . . . . . . . .
Index of Reviews by Subject of Work Reviewed . . . . . . . . . .
Index of Table Errata . . . . . . . . . . . . . . . . . .. ...
Index of Corrigenda, . . . . . . . . . . . . .. ... ... ...
Index of Microfiche Supplements . . . . . . . . . . . . . . ...

The editorial committee would welcome readers’ comments about this microfiche
feature. Please send comments to Professor Eugene Isaacson, MATHEMATICS
OF COMPUTATION, Courant Institute of Mathematical Sciences, New York

University, 251 Mercer Street, New York, New York 10012.



Mathematics of Computation
TABLE OF CONTENTS
OcToBER 1969

Convergence Estimates for Essentially Positive Type Discrete Dirichlet

Problems . . .J. H. BrRamBLE, B. E. HuBBaRD & ViDAR THOMEE
Asymptotic Behavior of Solutions to the Finite-Difference Wave Equation

Caru E. PeaRsoN

Finite-Difference Methods and the Eigenvalue Problem for Nonselfadjoint

Sturm-Liouville Operators . . . . . . . . . . . . AvFrep CaRrasso
Block Implicit One-Step Methods . . . L. F. SuampINE & H. A. WaTts
A Note on the Stability of Predictor-Corrector Techniques . . James Case
Stochastic Quadrature Formulas . . . . . . . . . . . SEYMOUR HABER
Perfectly Symmetric Two-Dimensional Integration Formulas with Minimal

Numbers of Points . . . . . PuiLre RaBiNowiTz & Nira RICHTER
Eberlein Measure and Mechanical Quadrature Formulae. II. Numerical

Results . . . . . . . .. . .. V. L. N. Sarma & A. H. StrouD
Stability Configurations of Electrons on a Sphere . . MicHAEL GOLDBERG

Extensions and Applications of the Householder Algorithm for Solving
Linear Least Squares Problems
Ricaarp J. Hanson & Cuarnes L. Lawson
A Steepest Ascent Method for the Chebyshev Problem  MARCEL MEICLER
Reducing a Matrix to Hessenberg Form . . . . . . . . P. A. BUsINGER
A Generalization of a Class of Test Matrices . . . . RoBerT J. HERBOLD
Nonnegative Matrix Equations Having Positive Solutions
JERRY A. WALTERS
On Lehmer’s Method for Finding the Zeros of a Polynomial
G. W. Stewarr III
The Solution of Integral Equations in Chebyshev Series . R. E. ScraTon
Integral Relations Among Bessel Functions . . . E. O. Scaurz-DuBois
Some Limiting Cases of the G-Transformation
H. L. Gray & W. R. ScHUCANY

Factorization of Polynomials over Finite Fields . . RoBerT J. McELIECE
Lucasian Criteria for the Primality of N = h-2* — 1 . . . Hans RIESEL
Some New Results on Equal Sums of Like Powers . . . SiMcuaA Brupwno

ReviEws AND DEscripTioNs oF TABLES AND Books . . . . . . . . . .
BeRrGER, DaNsoN & CARPENTER 60, CoLLAaTZz, MEINARDUS & UNGER 59,
Cosrims 70, 71, 72, FErTis & CASLIN 63, HUBBELL & CHRISTOFFERSEN
61, KeLLy 58, LANCASTER 66, M1ksa 69, MURTY & TAYLOR 68, PATTER-
SON 62, RIORDAN 64, ROMAN 67, SPIEGEL 65, YOUDEN 57

TaBLE ERRATA . . . . . . . . . . . . . ... e e e e
ABramMowiTz & STEGUN 444, ERrpELYI, MAGNUS, OBERHETTINGER &
Tricom1 445, GRADSHTEYN & RyzHIK 446, LaNczos 447, PATTERSON
448, SPIEGEL 449

CORRIGENDA . . . . « « v v v e e et e e e e e
Gurscuick & Lupwic, Yang

695
711

77
731
741
751

765

781
785

787
813
819
823

827
829
837
845
849
861
869
877

881

891



	Cit r132_c135: 


